If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-9x=7
We move all terms to the left:
18x^2-9x-(7)=0
a = 18; b = -9; c = -7;
Δ = b2-4ac
Δ = -92-4·18·(-7)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{65}}{2*18}=\frac{9-3\sqrt{65}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{65}}{2*18}=\frac{9+3\sqrt{65}}{36} $
| 8x-10=5x+34 | | 0=p^2-7p | | 10×t=8×5 | | 7u=-33 | | 3x+¹=81 | | 13=8n-5 | | b) | | 5x-16=22+3x | | F(6.3)=9s+1 | | 0.4x−4=0.6x+1 | | -3c-13=32 | | 16^(2x+3)=64^x | | v-3=44 | | 71+(12x-37)=180 | | p+28=74 | | 71+(12x-37)=x | | 4x+4x+x+x=50 | | 2s^2+4s+10=0 | | 4x+4x+x=50 | | 2x-3(-2)-14=0 | | (n+6)(-4)=8 | | n+6(-4)=8 | | X2-3x-6/x2-1=1 | | 2x/x-4=8 | | 21+t=61 | | p+34=57 | | 5x-11=16x-18 | | -12x+13=15x-7 | | 7z+4-9=8 | | 0.5=4x-2(1.3x-4) | | | | 5x+11=16x-18 |